Quadbot Forward Kinematics

The Forward Kinematics for the left leg of the Quadbot have been formalised, using modified Denavit-Hartenberg parameters and axes conventions.

I also made a simple Python applet to verify the maths and visualise the leg’s poses. I used Tkinter and three Canvas widgets to show orthogonal views.

The reason I am testing the maths in a quick Python program is that I want to be able to port them easily over to Arduino, as my latest aim is to drop the Raspberry Pi and A-Star 32U4 LV Pi expansion module (shown in some of the latest CAD models) in favour of trying out an ArbotiX controller. A benefit with the latter is that I wouldn’t need a Dynamixel-to-USB converter (e.g. USB2AX) or separate motor power supply.

Next up will be to work out the Inverse Kinematics.

  Link
Twist
Link
Length
Link
Offset
Joint
Angle
j alpha_i-1 a_i-1 d_i theta_i
1 0 0 0 th_1
2 pi/2 29.05 0 th_2 – 34
3 0 76.919 0 th_3 + 67.5
4 0 72.96 0 th_4
5 -pi/2 45.032 0 th_5

D-H Parameters

Quadbot 17 Kinematics_001

Quadbot kinematics applet, zeroed position

Quadbot 17 Kinematics_002

Quadbot kinematics applet, test position using sliders

2 thoughts on “Quadbot Forward Kinematics

    1. dxydas Post author

      Thanks for the suggestion! I’ve already bought an Arbotix for testing, but will look into it. Will probably need the expansion board for the power supply.

      Reply

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s