Tag Archives: URDF

Fitting the foot force sensors

I finally got round to installing the force sensing resistors to the underside of the Bioloid’s feet. I am using the FSR 400 Short model, with male end connectors, which are small and flat and didn’t fit in the square female header pins which often come at the end of breadboard wires. I didn’t want to solder directly as I’ve damaged these sensors in the past, so I followed a suggestion on the Adafruit website and ended up using these PCB terminal blocks.

The force sensing element of the FSR fits nicely in the pre-existing cut-out on the underside of the Bioloid foot plate, and the pins are fed through a hole in the plate so they can be connected on the topside. However, in the standard Bioloid humanoid configuration, the foot plates are attached at an offset from the ankle angle brackets, which means there is not enough space between the footplate and the bracket to connect the pins. To fix this, I moved the footplates so that the ankle brackets sit along their centres. There is still some free space between the footplates when the Bioloid sits in its resting position, so hopefully the feet will not collide with each other after this change.

For completeness, I also made changes to the CAD model and also added FSR CAD models to the feet, although that is just a cosmetic addition to the model (on a related side-note, I also found a CAD model of the USB2AX which adds to the realism)! The robot’s URDF files and CAD models have been updated on GitHub.

Here are some pictures of the results:

Playing around with Gazebo

I thought it would be interesting to see if I could get my current Bioloid URDF file into Gazebo and try out some simulations. It turned out not to be too difficult; in order to load the model in Gazebo, all I had to add to the URDF were inertial elements for each of the links.

I set up a couple of tables and beer cans in the scene, and dropped the poor Bioloid from a height!

If you already have a URDF description of your robot, Gazebo is fairly easy to set up and has great potential for any simulation-based project, however as I am focusing more on the physical robot, I probably won’t be using it much for the time being. That, plus the fact that my laptop can barely handle the program without overheating!

ROS interconnections

In this post I will cover the current state of my ROS setup for controlling the Bioloid’s motors and custom hardware.

The rqt_graph package provides a way of visualising the interconnections between all running ROS nodes. The following graphs show the current setup:

Here is a breakdown of the running nodes:

  • bioloid_sensors (MCU Arduino code): The MCU is running an Arduino program using the rosserial_arduino library, and publishes the IMU’s data as ROS messages over serial-to-USB. The rosserial package was useful as an easy way of sending ROS messages from the MCU to the controlling PC.
  • serial_node: This is a node included in the rosserial_python package, which reads serial data from the MCU.
  • imu_tf_broadcaster: This is a custom node which uses the IMU’s data to calculate the robot’s orientation, as detailed in this previous post.
  • dummy_odom_frame_broadcaster: This is a static_transform_publisher node from tf, which transforms from the map to the odom frame without any actual change in orientation or position. This is simply to keep in line with the ROS conventions, as explained in this previous post.
  • ax_joint_controller: This is another custom node for communicating with the AX-12 servos. This is a work-in-progress, but currently acts as a ROS wrapper around the USB2Dynamixel/USB2AX library. It publishes the servo positions (in radians) as a ROS sensor_msgs JointState message, on the ax_joint_states topic. It also runs a number of ROS services for controlling the servos from other ROS nodes. These are either higher level commands (such as for setting all motors to home position), or low level commands for directly reading from or writing to the AX-12 Control Table’s addresses.
  • joint_state_publisher: The joint_state_publisher is a tool for setting and publishing joint state values for a given URDF file. The node here reads the values from the ax_joint_states topic (by setting the source_list parameter) and publishes on the joint_states topic. I suppose this node could currently be bypassed entirely, however it does provide a nice GUI window for visualising the joint positions as sliders, and is also useful for moving the robot’s joints in RViz when ax_joint_controller is offline.
  • robot_state_publisher: The robot_state_publisher works in tandem with the joint_state_publisher and publishes the state of the robot to tf. The robot_state_publisher reads the configuration of the kinematic chain from the URDF file (set by the robot_description parameter). The set up of the URDF file has been covered in a previous post. The virtual model of the robot is then displayed in RViz, with joint positions reflecting those of the physical robot.

That is about it for the current setup. I have some work-in-progress nodes which interface with the above framework and test some of the robot’s motions, so in a following post I will discuss these and show some new videos of the physical robot in action!

Representing the robot in ROS

Building a virtual robot

In this post, I’ll be describing the first stage in getting a working representation of the, as of yet unnamed robot, into the ROS world. I will also be briefly exploring the MoveIt! library, as this might be a useful tool for the future.

The virtual representation of the Bioloid will be built using CAD models of all the individual servos and support brackets. The robot will be loaded up in RViz, where its links an joints will be manipulated. Inverse kinematics will hopefully be calculated by the MoveIt! package later on. But first, a definition is needed of how the joints and links are all connected, and how to move between their frames of reference. The individual CAD components will be oriented correctly onto these frames.

On a side note, I had the chance to photograph the Bioloid in its current state, and also had a Raspberry Pi 2 delivered!

After some background reading, I found out that the best way to create this representation in ROS is by using a standardised XML format file called the Unified Robot Description Format (URDF).


CAD models

In the past I had made a start on drawing a CAD model of the Robotis servo, but since then Robotis has released CAD drawings of all their robot kits online here (old link).

I tidied up the .stp files using FreeCAD, by removing some placeholder parts or sub-parts which would be of no use (e.g. screws, gears and electronics on the inside of the servos and CM-5). I then converted the files into .dae (Collada) format, and imported them into Blender to add some colour textures. For some reason, saving again as .dae in Blender shrunk the model dimensions by 100. I haven’t worried too much about the actual component size at the moment, as only their relative scales have to be correct for now. There is also a bug in RViz which replaces the ambient color of Collada materials by light grey if at least one component of the specified ambient color is 0. To fix this, I manually edited the file and replaced all 0’s with 0.1 in the “ambient” tags. Below are some of the main components, as rendered in Blender.


The Unified Robot Description Format

The URDF file itself is written in a plain markup language. As the definition of various links is written more conveniently with some basic maths, and because many bits of code will inevitably be repeated or recycled (e.g. the mirroring of the left-hand side based on the right-hand side), ROS has a macro language called xacro, which makes it much easier to create and maintain URDF files. A URDF is generated from a xacro file using:

rosrun xacro xacro.py model.xacro > model.urdf

Creating the file for the Bioloid took a fair while, as I created all the translations by eye without knowing the actual distance measurements between the various links, but rather by relying on the CAD components as each one was placed in the chain. I started with the right side of the model, first with the easier arms, then with the legs.

The validity of the URDF file can be checked with teh check_urdf tool. Another great tool for visualising the final result is urdf_to_graphiz, which generates a diagram of the joint and link tree. The tree of my model is shown below. Each joint (blue circles) is positioned with respect to its parent link (black rectangles), and the following/child link is positioned has the same origin as the joint, as shown here. The xyz and rpy labels next to the arrows show the translation and rotation required to get from parent frame to child frame, or in other words, it is the representation of the child’s frame with respect to the parent’s frame. You will also notice the addition of the IMU link, as well as an additional camera link, although this is just a placeholder for a possible camera in the future, and at the moment won’t be used.

Graphviz diagram of URDF file

Graphviz diagram of URDF file


The robot in RViz

The current state of the robot is shown in the screenshots below. The robot is displayed in RViz with the help of the ROS joint_state_publisher and robot_state_publisher. It is fully articulated and the individual joints can be moved with the help of the GUI which joint_state_publisher provides. The joint states will later be published from the joint values read by the real Bioloid servos. In addition to the kinematic model, I created bounding boxes around the components for the collision boundaries, which are shown in red. This was after the fact I realised that without them, the MoveIt! plugin would use the full CAD geometry in its collision detection routines, which made it almost grind to a halt!


Integration with MoveIt!

I have only played around with MoveIt! briefly so far, but the results seem very promising. The library has a useful graphical setup assistant, which essentially enhances the URDF with a Semantic Robot Description Format (SRDF) file. The URDF only contains information about how the joints and links are arranged, as well as some other information such as joint limits, and the visual and collision data. The SRDF doesn’t replace the URDF, but exists separately and contains other information, such as further self-collision checking, auxiliary joints, groups of joints, links and kinematic chains, end effectors and poses. So far I haven’t found any need to edit the SRDF directly, as it can be generated and edited by the setup assistant.

The assistant generates a new ROS package with various templates for path planning and visualisation, which is done via an RViz plugin. So far I have managed to interact with the virtual Bioloid’s arms and legs, in a similar way shown in this PR2 robot tutorial. The aim will be to later on create some poses and walking gaits which I can try out on the real robot, but that is all for now!


Useful links

URDF:

MoveIt!:

RViz scaling and ambient colour issues:

 

Robot Revival

The Bioloid story

Many moons ago, I purchased my first humanoid robot, an 18-servo Bioloid Comprehensive Kit. At the time, humanoid robotics for hobbyists was at its early stages, and I chose the Bioloid after much deliberation and comparison with its then main competitors, the Hitec Robonova and Kondo KHR-2HV. I went for the Bioloid mainly because of the generous parts list, which doesn’t limit the design to just a humanoid robot, as well as the powerful AX-12+ Dynamixel servos. These have a number of advantages over the more traditional simple servos, such as multiple feedback options (position, temperature, load voltage, input voltage), powerful torque, upgradeable firmware, internal PID control, continuous rotation option, a comms bus that enables the servos to be daisy-chained … and the list goes on!

After building some of the standard variants trying out the demos, attempting a custom walker, and playing around with Embedded C on its CM-5 controller board, I never got around to actually doing the kit any real justice. I have finally decided to explore the potential of this impressive robot, and make all that money worthwhile!

This post begins one of hopefully many, in which I will detail my progress with the Bioloid robot.


Initial hardware ideas

The general plan for hardware is to extend the base platform with various components, avoiding the need for custom electronic boards as far as possible, as I want my main focus to be on software.
The Bioloid’s servos are powered and controlled by the CM-5 controller, which has an AVR ATMega128 at its core. I have played around with downloading custom Embedded C to the CM-5, but in terms of what I have in mind, it is much more convenient to be able to control the servos directly from a PC. The standard solution is the USB2Dynamixel, however much of this chunky adaptor is taken up by an unnecessary serial port, so I went for a functionally identical alternative, a USB2AX by a company called Xevelabs. The PC/laptop control will hopefully be replaced by a Raspberry Pi 2 Model B (on back order!) for a more mobile solution. I have not thought about mobile power yet!

Despite the impressive servos, the stock Bioloid offers little in terms of sensors. A provided AX-S1 sensor module has IR sensors/receiver, a microphone and a buzzer, all built in to a single package, which resembles on of the servos, and acts as the Bioloid’s head. Although updated controllers by Robotis have emerged over the years, the original CM-5 had no way of directly integrating sensors to it, and was limited to the AX-S1.

Since a bunch of servos without any real-world feedback does not really make a robot, I am going to add a number of sensors to the base robot. The current plan is to use a MinIMU-9 v3 for tilt/orientation sensing, and a number of Interlink FSR 400 Short force sensing resistors on the feet. Very conveniently, the undersides of the Bioloid’s feet have indents in their four corners which perfectly match the shape of the FSRs! A Pololu A-Star 32U4 Mini SV (essentially an Arduino board) will perform the data collection and pass it over to the PC via serial-to-USB.

That is as far as my current considerations go in terms of hardware. At some point I will look into vision, which may be as simple as a normal webcam. I originally thought that an Xbox Kinect would be ruled out because of size, but apparently it can be done!


Initial software ideas

I plan on using ROS (Robot Operating System) as the main development platform, with code in C++. As well as playing around with ROS in the past, its popularity in a large number of robotics projects and large number of libraries makes it a very development platform. Also, I recently discovered the MoveIt! package, which would be great to try out for the Bioloid’s walking gait.

For simplicity, the A-Star will be programmed using the Arduino IDE. I was pleasantly surprised that I wouldn’t have to write any serial comms code to get the sensor data into the ROS environment, as a serial library for the Arduino already exists. ROS is already looking like a good choice!

The A-Star will initially just serve ROS messages to the PC. It may potentially perform other functions if it has the processing power to spare, but for now there is no need. A ROS service running on the PC will be needed to interface with the Dynamixel servos, instructing the servos to move, reading their feedback and publishing the robot’s joint states to various other ROS nodes.

My next post will focus on the new sensor hardware. Until then, please let me know your thoughts and suggestions, all feedback is welcome!