Tag Archives: Fusion 360

From paper to plastic

… or more correctly, from CAD to reality, as it is time for 3D printing!

I’ve recently got a new 3D printer in the form of a FlashForge Creator Pro 2017, which means I can start printing some of the structural components for the quadruped now, leaving the decorative pieces for later. In fact, some of them have already been printed, as you can see in the images below.


Chassis parts

All the parts were recently updated from their previous iteration slightly, by adding fillets around the edges, and decreasing nut hole diameters by 0.2 mm in order to provide some material for self-tapping threads. On the other hand, I increased the tolerance of some slots by the same amount, to allow a tolerance for their connection to interlocking plastic tabs.

The rear section has also been modified: the underside aluminium base will have a tab at 90° that connects to the rear, to provide more rigidity to the central connection with the spine servo bracket.

Here are the CAD models of the chassis parts:

Foot base

Front body assembly

Rear body assembly

 


Printing

All parts were printed in PLA plastic.

The first part I started with was the foot base. I printed it with a 20% honeycomb infill. I didn’t add any intermediate solid layers, but might do so in other parts. I have so far printed two out of the four bases.

Each leg will connect to a leg base bracket, which is the same design for all legs. The part was printed “upside-down” because of the orientation of the interlocking tabs. This meant that some support structure was needed for the holes. For the first print attempt I also added supports around the overhang of the filleted edge, along with a brim, but for the subsequent prints I didn’t bother with these, as the fillet overhang held fine without supports, and saved from extra filing/sanding down. These parts also used 20% infill.

For the front and rear “bumpers”, I reduced the infill to 10%.

For the larger part comprising of the central section of the front, the spine front bracket, I also used an infill of 10%. Due to the more complicated design that would have included many overhangs, I found it easier to cut the part lengthwise and print it as two separate pieces. These will be super-glued together after sanding.

Time-lapse GIFs and images of the printing process:

 


The parts so far

In terms of printing times, the foot bases and leg base brackets took about 3 hours each, the bumpers took around 4 hours each, and the two spine front bracket halves took about 7 hours combined, so total printing time is going to be fairly large!

The 0.2 mm clearance seems to work fine for self-threading the plastic with M2 size metal nuts, but was too large for some of the plastic-to-plastic interlocking tabs, possibly since this tolerance is close to the resolution limits of the printer (theoretically a 0.4 mm nozzle and 0.18 mm layer height). However after some filing and sanding down, all the plastic parts fit together nicely.

The resulting 3D prints before and after sanding:


The assembly so far

Finally, here are some images of how the chassis assembly is shaping up, as well as the foot bases shown attached to the foot metal brackets. These fitted snug without any sanding, and all the holes aligned perfectly with the metal brackets, which was reassuring!


The next step is to glue the front bracket halves together, and maybe spray paint all the parts, as they lose all their original shine and end up looking very scratched after sanding.

 

Chip-E Remix Challenge entry

Work on the Quadbot has taken a backseat as I have been working on an entry for the Chip-E Remix Challenge on Thingiverse.

My main motivation was the 18 or so servos on the hexapod prize, which would be exactly what I need to continue with the build of the Quadbot! All the robots are interesting though, so any prize would be a win!

My entry to the challenge is … Chip-E-lata! Hope you enjoy.

 

Quad-legged robot ideas

My humanoid robot updates have temporarily taken a backseat due to some other distractions, such as the FPV quadcopter, and now this! Updates on the Bioloid will still continue however, as I am far from done with it.

So as another side-project, I’ve been thinking about trying to build a custom robot from the ground-up, rather than basing it on an existing platform like the Bioloid.


CAD software

I have been using FreeCAD for the Bioloid project, which is a great free tool but somewhat hard to use and lacking many of the features found in modern CAD software.

As I need to design a large number of new parts, I’ve been looking around for a good CAD software with most or all of the following key features:

  • free, or at least licenced for hobbyist use
  • parametric modelling
  • export to STL
  • 3D printing support tools a plus, but not necessary
  • nice renderer?

Autodesk’s line of tools seem to meet these requirements very well. Autodesk 123D seemed like an excellent choice, with more advanced features than its sibling Tinkercad, a CAD program which runs inside a web browser. However, Autodesk has recently been restructuring its suite of tool according to this announcement, so this lead me to check out Fusion 360.

It has a very flexible licensing model, which means it can be used for free as a student, educator, start-up and most importantly, as an enthusiast (non-profit). I have only been using it for a few days, but so far it seems impressive. It works very similar to SolidWorks, and has a number of useful features such as direct integration with various 3D printing tools and services, and an easy-to-use renderer. One thing that may be seen as a downside is the fact that everything is stored on the cloud, but local backups are possible.

 


Components & 3D printing

The main design of the robot will be centred around the use of Dynamixel’s AX range of servos, as they are the most competitively priced motors I’ve found for the power and features they offer. Most other high-torque servos are prohibitively expensive, considering I will need about 16 and each costs over £100!

The exact model will probably be the AX-12A, which is an improved version of the AX-12+ used on the Bioloid. I might be able to stretch to the faster, more expensive AX-18A, however as their external design is identical, any frames used will be compatible with both.

 

For the basic servo joints I will be using a combination of the plastic frames in the Robotis range, as well as possibly some metal frames by Trossen Robotics. The rest of the robot will be designed with 3D printed parts in mind. Whether I go for an expensive online 3D printing service or try and revive my 3D printer remains to be seen.


Inspiration:

These are a few images as well as designs by other hobbyists which I am using as inspiration: