Tag Archives: Danguinololu

Wiring the electronics, testing the motors and heating up the extruder

With the mechanical part of the RepRap largely completed, the next step was to wire up the electronics.

I had underestimated the amount of wiring required for the printer, so I braided the wire before wrapping it around the printer’s frame in an attempt to keep it as neat as possible. The wires have to be kept away from many moving parts, hot points, etc. Keeping them isolated should also minimise any cross-talk noise between the large lengths of cable. However, as the printer is going to have to be disassembled, packed and moved in the near future, I haven’t fixed the wires up with cable-ties yet.

The Danguinololu successfully communicated  motor and temperature signals so everything seems in order, except for the extruder motor which is behaving in an irrational manner and only intermittently accepting movement signals in one direction. Leaving this problem aside, I moved on to testing the heated extruder tip.

The heated tip temperature was incremented in steps up to 210 °C, while manually feeding some PLA plastic into the extruder. The plastic flows out of the tip effortlessly at around 200 °C, so things are looking positive for the extruder assembly! The remaining step is to calibrate a working motor to extrude plastic at the right speed for printing.

As I’m experiencing some issues with one of the motors, unfortunately the long-awaited calibration and test-printing stage has to wait!

Completing the axes and print table

Some further progress on the RepRap build this weekend. The frame is now complete and awaiting electronics (sneak peek in the last picture)!

Main updates have been:

  • The x-carriage plastic parts were reinforced with some Sugru as the vertical columns seemed weak and flexed with little force. The carriage was completed and mounted to the frame. The z-axis motors were attached to the top of the frame and connected to the x-carriage via the new-style couplings.
  • The MDF wood top plate was attached to the bottom plate and can freely tilt via the corner springs. This allows the printing area to move under pressure, ensuring that the frame and extruder will not get damaged if the extruder happens to get lowered too far onto the print area. The heated bed (wired-up previously) was attached to the top wood plate, with all thermistor wiring tucked in-between.
  • The extruder tip was attached to Wade’s extruder. Another strengthening mod here should ensure that the extruder PTFE barrier doesn’t get pushed out of the extruder by the force of incoming molten plastic, something which has happened with printer #1! The complete extruder assembly is now mounted on the x-carriage.